
LJDC 539.3 

APPROXIMATE REDUCTION OF THE EQUATIONS OF THE THEORY OF ELASTICITY 

AND ELECTRODYNAMICS FOR INHOMOGENEOUS MEDIA 

TO THE HELMHOLTZ EQUATIONS 

PMM Vol. 36, N’4, 1972, pp. 667-671 
I. V. MUKHINA 

(Leningrad) 
(Received November 10, 1971) 

The vector equations of the dynamic theories of elasticity and electrodynamics, 

describing the elastic and electromagnetic oscillations in appropriate arbitra- 

rily inhomogeneous isotropic media are considered. The Lame parameters and 
density for an elastic medium, as well as the dielectric and magnetic permea- 
bility, are assumed continuously differentiable functions of the coordinates. In 

both cases, the frequency of oscillation is considered a large parameter. It is 
shown that the elasticity theory equation separates in the zeroth approximation 

in the oscillation frequency into two uncoupled scalar Helmholtz equations 

for the longitudinal and the transverse potentials, and the Maxwell equations 

reduce to a Helmholtz equation for the vecter potential. 

1. Oscillations in an arbitrarily inhomogeneous isotropic elastic medium, where the 
Lame parameters h, p and the medium density p are continuously differentiable func- 
tions of the coordinates, are described by the dynamic elasticity theory equation 

ZJU : (k $2~) grad div u - p. rol rot II + grad (h + p) div u + 

-t rot (u x grad p) + grad (grad pu) - uhp + po‘b = 0 (1.1) 

For constant A,, l_r and p Eq. (1.1) decomposes into two scalar Helmholtz equations, 
one of which describes the longitudinal, and the other the transverse oscillations being 
propagated with the velocities up = I/&+$.)/p and u, =- r/ p / p , respectively . 

Equation (1.1) does not separate in the general case of an arbitrary coordinate depen- 

dence of A, p and p ( l ) . 
Let 0 be a large parameter relative to all the other quantities of the same dimensi- 

onality, for example O> 1 CV, I. Then the solution of (1.1) has the form 

u (x, 01) = +-(x)Q (x, co) (1.2) 

where eiwr(x) is the most rapidly varying factor in the sense that 

1 ypiw:(x) I’:> 1 VQ (x, o) ( 

For a function of the form (1.2) the operation of differentiation is equivalent, to the 
accuracy of a factor,to the operation of multiplication by o. The separation of (1.1) 
into scalar Helmholtz equations turns out to be possible for such functions to the accu- 
racy of infinitesimal correction terms as o* 00. 

*) For a radially inhomogeneous medium, the separation of (1.1) is achieved successfully 
by introducing complicated and artificial assumptions about changes in h, P and P. 
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The elastic wave field is the sum of the longitudinal up and transverse u, fields : 
u = up -/- u,. Let us introduce the longitudinal and transverse potentials cp and $ as 

follows (prompted by the corresponding formulas in 111): 

u,=gmdcp+%, u, = rot ($f) + zg (1.3) 

Here Y, Z and f are still arbitrary vectors dependent only on x, and rp and $ are 

scalar functions whose form is analogous to (1.2). In conformity with the above, the 

operation V applied to scalar or vector functions q of the type (1.2). increases the order 

of their absolute values in CII by one, i.e. Vq = 0 ( cq). Therefore, the second mem- 
bers in (1.3) are corrections to the first. 

Because of the linearity of the operator L , we let it operate separately on the func- 

tion u, represented by the first formula in (1.3), and then extract the Helmholtz opera- 
tor in me two principal terms and require that the remaining terms, of an order not less 

than 0 (02cp), vanish. Then the expression 

h-!-2/J VP 2Vu YE___-_...._ 
J”+p P a+p 

(1.4) 

is obtained for the vector Y and Lu, goes over into 

UVcp+y@= +p (V + <P) ( Aq’ + co2np2@‘) + o (V%p) (1.5) 

Here np is the index of refraction of the longitudinal waves and e-(V”q~) is undcrkood 

to apply to terms less than ( V2~ 1 or, equivalently, than &’ Jtp I. Therefore, if the 

Helmholtz equation for cp” is solved to the accuracy of o (VT) (this is sufficient to 
obtain the first term of the asymptotic series), then (1.5) is on the order of o (V’cp). 

Now. let us substitute the second formula in (1.3) into Lu,, let us extract the Helm- 

holtz operator from the principal terms, and let us require that the remaining terms, of 
order not less than 0 (‘7%) , vanish. We obtain 

Z=zxf, 2VP P VP z~_---L 
LSCL h+lJ P 

rot(Vlyxfj+% x (fV) 09 = 0 (V”$) 

Hence Lu, is written as follows: 

L [rot(+f) +Zqj = -$+A$” +(~*32.s2$‘)x 

+ Y (A$O + ~2~,2~“)~ + 0 (V?‘) 

qy= q)Jf/p, ,=,,f,yL3$+L_ 3hf5P VP 
2bfP) P 

(1.6) 

(1.7) 

ff 

( n,=J- 
u. (14 

Here o (Vs$) has the same meaning as in (1.5). If $” is the solution of the Helmholtz 
equation in zeroth approximation, then (1.8) is on the order of o (Vv). Substituting 

(1.5) and (1.8) into (1.1). we obtain 

q(V +@)(A@ + &~,~cp”) + +{V (A@’ + c~~n~“$~) x f + 

+ Y (A$“ + w*~~~IJP)) + o (V*cp) + o (V”S) = 0 (1.9) 
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If (p” and 9” are the solutions of the appropriate Helmholtz equations to 0 (Vcpj and 
o (Vg) accuracy, then (1.9) is satisfied to the accuracy of o (P(p) + o (Vv). Hence, 
(1.1) is satisfied to the accuracy o (Au) and, therefore, u = Vq + rot ($f) yields 

the zeroth approximation of the solution of the dynamic elasticity theory equation. 

Therefore, the vector equation (1.1) reduces to tm Helmholtz eauations 

A@ + 02np2$’ = 0, As/Y’ + &z,~$+’ = 0 (1.10) 

whose solutions, substituted into (1.3). yield the solution of (1.1) in zeroth approxima- 

tion. It should be noted that the second members in (1.3) are corrections and yield no 
contribution in zeroth approximation of the field u, although they play an essential 

part in going from (1.1) to (1.9). 
If the ray solution of (1.1) is of interest, i.e. Q (x, o) which is a series in recipro- 

cal powers of the parameter CIJ, then the field u is defined by the formula 

n = [Vcp + rot ($f>l [I + 0 (+)I (1.11) 

where cp and $ are the ray solutions of (1.10). Also valid for the field in the shadow 

is (1. ll), in which 0 (‘i / 0) is replaced by 0 (1/ ~‘/a), and cp and 4 are the solutions 
of (1.10) in the shadow domain. 

Let us explain what the vector f should be so that (1.7) would be satisfied. Let 9 be 

I# (x, 0) = eiw+s(x) *i (x, 0) 

where $1 (x, O) is a slowly varying function, and ‘t, (x) is the eikonal of the transverse 
wave, i.e. the equation (VT,)~ = ni2 is valid. Then 

V+ = i oV7,9 + 0 (Vg) 

and (1.7) goes over into the following: 

vz, x (Vz,V) f + (fvz,)? x VT, = 0 (1.12) 
s 

The vector f written in a local coordinate system connected to the ray 

f = afVz, + sin On - cos 0b (1.13) 

satisfies (1.12). where at is an arbitrary coefficient, 8 is an angle characterizing twist- 

ing of the ray, n is the normal and b the binormal to the ray at a given point.Substi- 

tuting (1.13) into the second relation in (1.3). we obtain 

u, = itm,q (cos tJn + sin 8b) + o (w$) (1.14) 

i.e. the transverse wave field in zeroth approximation should be polarized in a plane 

perpendicular to the propagation direction, which corresponds to the ray formula p]. 
An illustration of the application of this approach to the solution of the problem of 

diffraction by the smooth interface of two arbitrary inhomogeneous elastic media is 
presented in p]. 

2. Let us consider the Maxwell equations for an inhomogeneous and isotropic me- 
dium 

rOtH=-+~E, rot E = F pH (2.1) 

div I.LH = 0, diveE = 0 (2.2) 

where e = E (x) and ~1 = I_L (x) are the dielectric and magnetic permeabilities . 
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One equation is easily obtained from (2.1) for the magnetic intensity vector, say : 

rotrotH=$epH t $Vexrot,H (2.3) 

For constant E and p Eq. (2.3) goes over into the Helmholtz equation, which does not 
hold if e and l.t are arbitrary functions of the coordinates. However, even in this latter 
case if W is considered a large parameter and the solution is sought in the form (1.2)) 

Eq. (2.3) can be reduced, in a zeroth approximation, to the Helmholtz equation. 
Let 

(2.4) 

where the vector potential ,4 is a function of the form (1.2). and C js still an arbitrary 

vector. let us substitute (2.4) into (2.3), let us extract the Helmholtz operator applied 
to the vector A from the first two terms and let us require that the remaining terms, 

not less than 0 (PA) in order, vanish. We then obtain C = Vp / p , and the equation 

for the potential is 
. 

$x graddivA = o(V2A) (2.5) 

Hence, (2.3) goes over into the following : 

rot (AA + 02n2A) - 
( 
~++IL~ x (AA + 02n2A) + o (Of A) = 0 (2.6) 

where n = J&$ i c is the index of refraction. If the potential A satisfies the Helm- 

holtz equation to o (VA) accuracy (which assures obtaining the first term of the asymp- 
totic series), then (2.6) is satisfied to o (V2A) accuracy. It hence follows that H = 
p-“*rot A satisfies (2.3) to o (VH) accuracy, and yields the zeroth approximation of 

the solution. 
As in Sect. 1, the second member in (2.4) is a correction and yields no contribution 

to the zeroth approximation. Equation (2.5) is satisfied if the vector potential has the 

form (1.2), where T (IC) is the eikonal of the electromagnetic wave, and the vector Q 
in zeroth approximation 1s polarized in a plane perpendicular to the direction of pro- 

pagation. 
Let us note that if H in the form (2.4) is substituted into the first of Eqs. (2.2) where 

C = Bp / p, it is satisfied identically. 
Equation (2.3) can also be reduced to a Helmholtz equation for the scalar potential 

if it is considered that A = $f in (2.4). In this case the operator (2.3) goes over into 
(1.8) where I#’ = 1/F+, Y = rot f - VE / E - ‘/aVp/p and the index of refraction 

of the electromagnetic wave n takes the place of n, in the Helmholtz operator. Equa- 
tion (1.7), solved exactly as in the case of a transverse elastic wave, is obtained for the 

vector f . On the other hand, a vector potential can be introduced instead of the scalar 
potential for the field u, by using formulas analogous to (2.4). and the subsequent ana- 
lysis is exactly the same as for electromagnetic waves. Consequently, we arrive at the 
Helmholtz equation for the transverse vector potential. 

In conclusion, let us note that other linear equations of mathematical physics, such 
as the magnetohydrodynamics and magnetoelasticity equations, can apparently also be 
reduced to Helmholtz equations in zeroth approximation. 

The author is grateful to I. A. Molotkov for valuable discussions. 
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We indicate formal methods for the reduction of the integral equations of the 

theory of elasticity (not considered in [l] ) to infinite systems of algebraic 

equations. We consider an integral equation of the first kind with a difference 

kernel of mixed type, i. e. containing both Fredholm and Volterra operators. 
To such an equation one can reduce, for example, the problem of the bending 

of a semi-infinite plate on a linearly deformable foundation when for the in- 
version of the differential operator one makes use of the Cauchy function rather 
than the Green function [2]. The method by which this equation is reduced to 

an infinite system is based on the presence of spectral relations for the semi- 

infinite interval, In addition to the relations of similar type, indicated in [a], 
new spectral relations on the semi-infinite interval are constructed. An integ- 
ral equation of the second kind and of mixed type is considered. Integral equa- 
tions of the first and second kind with difference kernels and data prescribed 
on the axis with a cut-off segment are studied. We consider an integral equa- 
tion of the second kind on a finite interval with a kernel represented through 

an improper integral of the product of Bessel functions. The suggested methods 
can be carried over to the corresponding systems of integral equations. 

1. Let us consider the integral equation of mixed type 

~k~~--y)~~~)dll+Sz(Z--y)rn(y)dy=f(i) 
0 0 

We will assume that the integral representation m 

(1.1) 

(1.2) 


